8,184 research outputs found

    Simplicial cohomology of band semigroup algebras

    Get PDF
    We establish simplicial triviality of the convolution algebra 1(S)\ell^1(S), where SS is a band semigroup. This generalizes results of the first author [Glasgow Math. J. 2005, Houston J. Math. 2010]. To do so, we show that the cyclic cohomology of this algebra vanishes in all odd degrees, and is isomorphic in even degrees to the space of continuous traces on 1(S)\ell^1(S). Crucial to our approach is the use of the structure semilattice of SS, and the associated grading of SS, together with an inductive normalization procedure in cyclic cohomology; the latter technique appears to be new, and its underlying strategy may be applicable to other convolution algebras of interest.Comment: v1: AMS-LaTeX, 24 pages, 1 figure. v2: some typos corrected; a few minor adjustments made for clarity; references updated. Accepted June 2011 by Proc. Royal Soc. Edinburgh Sect.

    A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Get PDF
    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera

    Full text link
    Gaining a genomic perspective on phylogeny requires the collection of data from many putatively independent loci collected across the genome. Among insects, an increasingly common approach to collecting this class of data involves transcriptome sequencing, because few insects have high-quality genome sequences available; assembling new genomes remains a limiting factor; the transcribed portion of the genome is a reasonable, reduced subset of the genome to target; and the data collected from transcribed portions of the genome are similar in composition to the types of data with which biologists have traditionally worked (e.g., exons). However, molecular techniques requiring RNA as a template are limited to using very high quality source materials, which are often unavailable from a large proportion of biologically important insect samples. Recent research suggests that DNA-based target enrichment of conserved genomic elements offers another path to collecting phylogenomic data across insect taxa, provided that conserved elements are present in and can be collected from insect genomes. Here, we identify a large set (n==1510) of ultraconserved elements (UCE) shared among the insect order Hymenoptera. We use in silico analyses to show that these loci accurately reconstruct relationships among genome-enabled Hymenoptera, and we design a set of baits for enriching these loci that researchers can use with DNA templates extracted from a variety of sources. We use our UCE bait set to enrich an average of 721 UCE loci from 30 hymenopteran taxa, and we use these UCE loci to reconstruct phylogenetic relationships spanning very old (\geq220 MYA) to very young (\leq1 MYA) divergences among hymenopteran lineages. In contrast to a recent study addressing hymenopteran phylogeny using transcriptome data, we found ants to be sister to all remaining aculeate lineages with complete support

    High redshift galaxies and the Lyman-alpha forest in a CDM universe

    Full text link
    We use a cosmological hydrodynamic simulation of a cold dark matter universe to investigate theoretically the relationship between high redshift galaxies and the Lyman=alpha forest at redshift z=3. Galaxies in the simulation are surrounded by halos of hot gas, which nevertheless contain enough neutral hydrogen to cause a Ly-alpha flux decrement, its strength increasing with galaxy mass. A comparison with recent observational data by Adelberger et. al on the Ly-alpha forest around galaxies reveals that actual galaxies may have systematically less Ly-alpha absorption within 1 Mpc of them than our simulated galaxies. In order to investigate this possibility, we add several simple prescriptions for galaxy feedback on the IGM to the evolved simulation. These include the effect of photoionizing background radiation coming from galactic sources, galactic winds whose only effect is to deposit thermal energy into the IGM, and another, kinetic model for winds, which are assumed to evacuate cavities in the IGM around galaxies. We find that only the latter is able to produce a large effect, enough to match the tentative observational data, given the energy available from star formation in the simulated galaxies. Another intriguing possibility is that a selection effect is responsible, so that galaxies with low Ly-alpha absorption are preferentially included in the sample. This is also viable, but predicts very different galaxy properties (including clustering) than the other scenarios.Comment: Submitted to ApJ, 20 pages, 19 postscript figures, emulateapj.st
    corecore